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ABSTRACT 

A numerical analysis is made of the inviscid flow produced 

by a cylinder which accelerates from a state of rest to a constant, 

subsonic speed in a gas at rest. All features of the numerical 

solution are explained on physical grounds.  Consequently, ways 

are suggested to computed steady subsonic rlows around obstacles 

with a maximum accuracy and a minimum computational time. 
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t SECTION I 

TNTRODUCTION 

Time-dependent computations have been used primarily as a 

device to obtain steady state solutions of gas dynamical problem*.. 

As such, they do not differ conceptually from the relaxation 
1 2 

method ' ; no computed  results, except the final ones, are to 

be interpreted physically.  In principle, one can use a numerical 

technique which is consistent with the physico-mathematical model 

only in the limit, when all time derivatives vanish (see, for 

example, Refs. 3 and 13). 

In the first impressive applications of the relaxation 

method f   the computations (performed by hand) were constantly 

kept under the control of the analyst who, perhaps semi-:onsciously, 

would use his physical intuition to direct the work to a reasonable 

end.  Ir the task is shifted to a machine which operates, 

uncontrolled, by brute force, most likely the results do not 

converge or converge to a physically unreasonable pattern.  This 

can be said of relaxation methods and time-dependent techniques 

as well.  So long as no physical meaning can be given to the 

time-dependent results as functions of time, physical intuition 

cannot be used to explain the origin and nature of troubles.  Such 

vague terms as "nonlinear instability" are then used to mean that 

there is trouble but one does not know why. 

I intend to show, by a detailed analysis o! a particular 

problem,that time-dependent techniques may be devised which 

closely describe an actual time-dependent evolution; that errors. 
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generated by local Inconsistencies of the numerical model with 

the physical model, propagate throughout the flow field according 

to physical laws; consequently, that troubles can be traced back 

to their point of origin; and finally, that the initial and boundary 

conditions are as important in the numerical treatment as they 

are in the physical phenomenon. 

The problem chosen for analysis is the two-dimensional, 

inviscid compressible flow past a circular cylinder.  The choice 

ij justified by some interesting features of the flow, namely, 

1) The cylinder may move at a subsonic speed.  In this case, 

the steady state solution should cover the entire plane. 

2) Under the above assumption, a local buböle of supersonic 

flow (relative to the cylinder) may form.  In this case, one 

txpects an imbedded shock. 

3) If the cylinder moves at a supersonic speed, the perturbed 

region in a steady state is limited to a portion of the plane 

(behind tie bow shock) , 

4) Under the above assumption, can a numerical solution be 

found which has all the characters of an inviscid flow, that is, 

without separation in the leeward side? 

5) How does a steady pattern form when the cylinder takes on 

a constant speed starting from a state of rest? 

In addition, the choice of a circular cylinder instead of 

another geometrical shape is justified by some simplification in 

the    treatment of the wall points (which does not restrict the 

general conclusions). Finally, a similar problem has been con- 

sidered by other authors ' '  and myself . Thus.a critical 
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comparison can be mad« which confirms some of the conclusion« of 

the present paper. 

SECTION II 

THE PHYSICAL PROBLEM 

Consider a cylinder at rest In a gas at rect. Let the 

center of the cylinder star moving along a straight line (the 

x-axis), from right to left, with a velocity increasing from 0 

to a maximum value, V .  For example, let 

(1) x = - V sinuut       (0 < t < Tr/2t»j) 

where t is time and x is the abscissa cf the center of the 
o 

cylinder on the fixed x-axis.  For t > TT/2UJ , let the cylinder 

move at a constant speed along the x-axis. Asymptotically in 

time, a steady flow should be observable in a frame moving with 

the cylinder. At infinity, such flow should have a uniform 

velocity, V , and uniform values of the other physical parameters 

(all equal to their values in the gas at rest).. We want to 

analyze the transient from a physical viewpoint first. 

For consistency with the convention adopted in the numerical 

analysis, nondimensional symbols will be used. All pressures and 

densities are scaled to their values (p  ,p )   in  the gas at rest, roo' HOD       ' 

all velocities are scaled :o Jp    To  » all lengths are scaled to 
00  00 

the radius of the cylinder, r , and all times are scaled to 

r / «/p 7P~" . In particular, the speed of sound in the gas at o   oo  oo 

rest is equal to Jy  in nondimensional form, where Y is the ratio 

of specific heats.  A pressure coefficient will be defined as: 

r  o 



Our arguments will be ll.Tuetrated by two sets of aketehee. One 

i      will depict the state of the flow at a given time on the plane of 

motion, by ar Isobar pattern.  The croäs-sectlon of the cylinder 

will appear as in the upper part of Fig. 1. The other will show 

isobars, as functions of time, along the heavy line in the upper 

part of Fig. 1, which consists of 

1) the x-axis in front of the cylinder, 

2) the upper surface of \.he cylinder, and 

3) the x-axis behind the cylinder. 

As shown in the lower part of Fig. 1, the time axis runs horizontaj l.y 

from left to right.  Lines AA and BB represent points A and B, 

respectively, in a frame moving with the cylinder. 

Between BB and AA, r=9O/100-.9. '"his strip represents the 

upper part of the cylinder.  Above AA, where the x-axis in frcnt 

. '     of the cylinder is represented, ^=-x-0.1.  Below BB, where the x-axis 

behind the cylinder is represented, Q=  -x+0.1.  In a steady state 

(with respect tc the cylinder) the isobars are straight, horizontal 

lines. Any perturbation produced by the cylinder at any time t > o 

is confined to the region bounded by the two characteristics 

issuing from A and B at t=0, unless they are overcome by a faster 

moving shock.  The upper characteristic, AM, is defined by 

d;/dt» -V/Y
-+ x , the lower one, BN, by dc/dt= -Vv" + x .  Therefore, 

once the cylinder moves at a constant speed V(=M Jy~)   both 

characteristics become straight lines,defined by 

(3) dC/dt- - yr~(M0 + 1), 

respectively, 

« A 
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Fig. 1 

When the cylinder starts moving to the left, the portion of 

the cylinder near A acts on the flow at rest as a piston and, in 

the first phase of the motion, the ensuing flow is, to all 

practical effects, one-dimensional. At a time. 

(4) t = irikjö) 
2JT" 

{Y+l)Vo UU -K      (Y+1) |5fo(0) | 

a shock builds up along the AM characteristic.  Shortly there- 

after, the one-dimensional shock reaches its peak strength. At 

t, "TT/2UU, when the cylinder starts moving at a constant speed, the 

pressure at A is approximately given by: 



15) P.-   (-&■)*    -   (1+ "^ VJ^1 Hi 1+ v^"  V 
2v^ 

if V « 1.    Thus 
o 

(6) cpA(t1)«2(yY7vo 

The pressure behind the fully developed shock in the one- 

dimensional case is 

2YM B
-(Y-1) 

(7) p=  ^ 
Y+l 

where M is the ratio between the modulus of the shock velocity s 

in a  fixed  frame and the speed of sound in the gas at rest,  */yT 

The  velocity of the gis relative  to the shock  is 

(8) urel=  V V7Ms 

where V is the absolute velocity of the gas in a fixed frame. 

In front of the shock thus, 

urel= ^~Ms 

Behind the shock, 

(Y-DM* + 2 
(9) urei= ^M

S TT+rnn—= -V^ NS s 

Therefore, 

and 

(10) 

2M  2  - -^ V M -2=0 
S ^Y O   s 

Ms=I(^Vo + /^V0.+16} 

By substituting M    from   (ID)  into   (7),  simplifying  for V « 1 and s o 

comparing with (5^ or (6), one sees that the final pressure between 

piston and shock when a steady state is reached is practically the 



saume as ths pressure at the beginning of the constant velocity 

phase of the piston motion, If V is small. 

At B, the opposite phenomenon occurs.  If B were a one- 

dimensional piston, its motion would produce an expansion wave and 

the pressure at B would be given by 

Consequently, at B 

(12) Cp^ -2777 vo 

We can,thus, anticipate the existence of a first phase of the 

motion in which the front and the rear of the cylinder act 

independently as compressing and expanding piJtons, respectively. 

In this phase, a shock, similar in strength to a one-dimensional 

shock, will form in front of A and surround the front of the 

cylinder.  Its strength decreases as the e«n/2 lire is approached; 

then the shock degenerates into a characteristic surface surrounding 

an expansion zone in the back of the cylinder. 

At the same time, however, a compression wave is sent by A 

all along the cylinder towards the rear and an expansion wave Is 

sent by B towards the front. As a result, the pressure decreases 

on the front of the body and increases on its back.  The pressure 

distribution around the cylinder in the first phase of the motion 

is qualitatively shown in Fig. 2a.  Soon after the motion starts, 

the compressed and expanded regions are practically antisymmetrical 

with respect to the 9=TT/2 line.  The shadowed region corresponds 

to C >0.  The pressure waves did not coalesce yet into a shock. 
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Fig. 2 

The almost antisymmetric pattern evolves in time along the 

HAEBI line as shorn in Fig. 2b. 

The curvature of the walls acts against the effects described 

above. As soon as the acceleration vanishes, that is, at t*tit 

the pressure at A starts dropping and the pressure at B starts 

increasing.  The effect is shown in Fig. 3 by the closing of some 

of the isobars. Note that the perturbations produced at J and L 

(that is, the points A and B of the circle at time tj) propagate 

along the lines JK and LP, almost parallel to AM and BN, 

respectively.  The effect above is still antisymmetric. However, 

8 





another «ff«et takas plac« naanwhll«. Th« conpraasions g«n«rtt»d 

along AJ and th« «xpanslona genaratad along BL propagat« along 

th« cylindar.  AB a con««qu«nc«, th« pr«««ur«« to th« right of 

th« line AQ tend to incr»a««, and th« pr«««ur«« to th« right of 

th« lin« BR tend to decrease.  Th« isobar« tend to bulge a« 

shown in Fig. 4. The effect is d.fferent in the front and back 

of the cylinder since the perturbations propagate at different 

speeds in opposite directions. The compression is moving faster 

than the expansion; thus, the changes in the isobar pattern is 

more impressive in the back side of the cylinder.  The expanded 

zone tends to move forward, twisting the C =0 line out of 
P 

symmetry, and a new compressed zone develops near point B (the 

shadowed region in Figs. 5 and 6 ). 

In Fig. 6, note that most of the outer boundary is unaffected; 

indeed, it moves outwards at the speed of sound and cannot be 

reached by perturbations generated later on, other than fast- 

moving shocks. 

In a steady state, at V« 1, (practically incompressible 

flow) 

(13) Cp= -^   (2 cos2e- -p- ) 

with r, 9 polar coordinates with respect to the center of the 

cylinder and the x-axis.  The isobars appear in a form, symmetrical 

to the Q-rt/2   line, shown in Fig. 7.  The discussion above, and 

particularly Figs. 5 and 6, show how the transition from the 

antisymmetric pattern of Fig. 2 to the symmetric pattern of Fig. 7 

can occar, in the vicinity of the body. 

10 
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It nuat b« claarly und«rftood# how«v«r# that the complat« 

pattern of Pig. 7 (that i»,  axtandlng to Infinity) ia thaoraticallv 

achiavad only aftar an infinite tiroa. Indeed, the pattern of 

Fig. 7 in the vicinity of the body ia aurrounded by en outwerd 

moving region which containa the remaina of the original coinpreaaion 

and expanaion, Aa pointed out above, no further perturbation can 

reach and modify the initial wave front.  Thus, at a finite time 

t a pattern aimilar to the one shown in Fig. 6 should appear. 

Typical times and distances can be evaluated approximately 

by elementary meins.  Since the shock is weak, its velocity ia 

practically the same as for a sound wave.  Therefore, the outer 

boundary of the perturbed region can be found as the envelope of 

the perturbations issued by the body points at t=0.  The envelope 

is defined parametrically by 

(14)        [x+x0(t)-co8g,;i» + fy-ain«)]
8 = vt? 

if one assumes that the speed of sound in the perturbed region 

equals the speed of sound of the gas at rest and neglects the flow 

velocity. Elimination of 9 between (14) and its derivative with 

respect to qp yields the equation of the envelope: 

(15) [x+x0(t)]
a + y^ « (WTt)8 

which is a circle centered at x= -x (t), y=0 and with a radius 
o 

equal to 1 + v'v't. 

In a similar way, and under the seme assumptions, the envelope 

of the perturoations issued by the body points at time t: (when 

the body starts moving at a constant speed) is found to be 

(16) [x+x (t)-x (t1?P+ya= [IVV (t-t,)]» 

12 



that is, a circle centered at x- -x0(t)+xo(t1)»Vo{t-tx), y*0 and 

with a radius equal to H./Y (t-tx). The two circles defined by 

(15) and (16) are shown in Pig. 8: they are marked PCD and GHL# 

respectively.  The heavy-shadowed regions at the front and rear 

of the perturbed flow may contain pressure oscillations produced 

by compressive and expansive waves of decreasing strength, 

traveling almost periodically along i-he body as a result of the 

first compression and expansion; every time one of such waves 

arrives at either A or B, it sends a signal towards F or D, 

respectively, and these signals are alternate compressions and 

expansions of decreasing strength. 

Let us consider now the case in which the cy-ii^^r accelerates 

to a higher speed,so high that a supersonic bubble is expected 

to appear at the top of the cylinder in the steady state.  It 

is well-known experimentally that the return from supersonic to 

subsonic flow tends to take place abruptly, across a shock wave. 

The symmetry of the flow ebout the fl»TT/2 line, as in Pia. 7, is 

thus destroyed when a supersonic region exists. We can see how 

this happens by analyzing again tha evolution of the flow in time. 

It is evident from «7igs. 5,6, and 8 that the transition from 

the initial, antisymmetribal pattern to the steady state pattern 

is characterised by a corpression region growing about point B 

and moving towards the front of the cylinder.  If high pressure 

differences exist between E and B, the forward moving pressure 

wave may coalesce into a shock, which will continue moving towards 

E until it reaches a position of equilibrium.  In this case, Pia.8 

is replaced by Pig. 9, where the imbedded shock is shown, starting 

13 



'ran the body at M. A qualitativ« »ketch of the aonic Una is 
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SECTION III 

OUTLINE OF A NUMERICAL TECHNIQUE 

The numerical computation is performed in a region bounded 

by the cylinder and by an external boundary which is (except in 

the first phase of the motion) the line separating the perturbed 

flow by the outer flow at rest, with respect to tne fixed frame. 

The numerical technique is composed of the following parts: 

1. Computation of interior points. 

2. Computation of points on the cy.linder. 

3. Computation of points on the outer boundary. 

4. Test for coalescence of pressure waves. 

5. Imbedded shock fitting. 

6. Treatment of the initial phase of the motion. 

SECTIOIJ IV 

INTERIOR POINTS 

To compute the interior points, the equations of motion for 

an inviscid, compressible flow are written in a polar frame, whose 

origin is located at the center of the cylinder and whose x-axis 

coincides wi^h the x-axis of the fixed frame.  Thus, the equations 

of motion are 

P.+UP + - Pft+vu + X- v^fv - = 0 t       rre      rreTr 

ut+uur+ 7 ue+ 7Pr- ~- + Yocos9=0 

vt+uV 7 v f v ^ - vin9-c 

S
t+uSr+ 7 V0 

15 

(17) 



Here, u and v are the radial and transverse velocity components 

In the moving polar frame (that Is, relative to the circle), 

P«ln p, 7"p/p# S-P-y In p. 

In order to maintain a certain fineness of the mesh near the 

cylinder when the outer boundary moves away, a stretching of  the 

r-coordlnate is needed.  The stretching is achieved by first 

normalizing the r-coordinate by means of the transformation 

(18) c- frf 
where r=c{c,t) is the polar equation of the moving boundary.  Then 

a new set of variables (x,Y,T) is defined by 

Ir-  u fn- tanha(X-0.5)1  Y_ ,. _L_ln H-(2 r-l) tanh ( 3/2) 
'" ^ l1+  tanhWi) J' X" h+  ^Tln l-(2'-litanh(72i 

T» t 

where a Is a function of tim*».  Note that, at the body, r=0 and 

X=0, and at the outer boundary, '»l and X=l.  If the values of 

X are all equally spaced, with increasing a the values of f tend 

to accmulate in the vicinity of rmQ  and ;*1. 

For any function f, 

(20)        VV^r'V-W'V 't-Vx^c^t^^t1 

In turn, 

^r" ^T ' 'e" -CCrc9, Ct- -CCrct 

(21) 

v  2tanh(^/2)  1  Y 1-2X.2>1  l-tanha(c/2) 
XC 1^  l-(2:-l)5tanh5(ry2) 'Xr=Tr+~2T" 1-^c-liXanl»* {n/2) 

16 



The  equation»  of motion in the   (XtY#T)   epace  thu« becone 

Pt+APx+BPY+v (CUjj-DVy+EVjj+r) -0 

(22) 

u.p+Au^BUy-KäP^H-O 

vT+Avx+BvY+JPx+LPy-Ki-0 

S.j.+AS^BSy-O 

where 

(23) 

C=XrCr' D' 7 ■ UC(c-l) ' E=7XC^ 

F= -p , G= 7C, J- ~ ^X Ce, L= - iy 

B = uv 
- - -, H- - — + xo cose, 

Q= T " xosin9 

A= xcCrC-CV
u- f CC0] +Xaat 

To solve (22) numerically, a second-order accurate scheme 

is used.  In the present case, I abandoned the scheme used in 

all my previous work in favor of a scheme recently used by 

8 MacCormack .  Numerical experiments performed on one-dimensional 

problems and on the blunt-body problem show that MacCormack's 

scheme yields the same accuracy with a simpler coding.  The 

advantage is particularly strong in viscous flow problems and 

there are seme minor advantages when imbedded shocks are present. 

There are no sizeable reductions in computational time, however, 

since the simpler scheme requires a double computation at each 

time step and this is almost »quivalent to computing once the 

double set of first and second derivatives. 

In the present scheme, a first set of intermediate values 

— k+1 
f    at t=(k+l)At is computed by the general formula 

17 



-f 
(24) 

where 

(25) 

.-£ 
«Üt1-^ «+ (A   n->-1i";v "i"1 + B "'rc**    "'" + OAT 

•p 
u 
V 

Lsj 

,  A- - 

A YC   YE  0 
G A     0     0 
J 0    A     0 

..0 0     0    AJ 

B- - 

B 0  -YD  01 
0 B     0     0 
L 0     B     0 

L0 0     0     0 

,   c- - 
YF 
H 
Q 

Lo 

and the elements of A#B and C are computed at the point X=nAXf 

k+1 YäsmAY,     The final values  f   " are computed by the  formula n,m 

+f k+1 £k+l_ ^k+1 -gk+l    -sk+1 

(26)   fk+1 =    n'm'0 
n'm   +   (Ä -^^ ^"V TS Biffil-JLdBll + c)4? 

T\ _ TT1 J Ax A v^ '      1 n,m AX AY 

where the elements of X.B and ^ are based on the values f  _ . n,ro 

It may be noted that the equations of motion are not 

formulated in conservation form. Let it be clearly stated that 

I never used the conservation form in any of my previous works 

9 10 either, since I do not see any strong reason for it ' 

SECTION V 

BODY POINTS 

The body geometry in the present problrm is so simple chat 

the body points can be computed by using an integration scheme 

similar to the one used for interior points.  Obvious simplifications 

follow from the vanishing of u,X and X .  Only one X-derivative, 
ex 

uv is  left in the equations.    It is advisable to approximate it 

numerically by a three-point  formula in both stages of the 

integration scheme.    Better results seem to be obtained,  however, 

if  the method outlined in Ref.   10 is used.    A Cartesian frame of 

reference is used at each body point;   its  5-axis  is normal  to 

18 



the wall and its —axis is tangent to the wall. With respect to 

the cylinder, the (?,-) frame has a translational motion defined 

by a constant velocity, equal to the flow velocity at the body 

point, at time (k+l)^t.  Let u and v be the components of the flow 

velocity, relative to the cylinder, in the (?,-) frame. A 

characteristic equation in the (^t) plane (which moves along with 

the »-axis, normally to itself) is written: 

(27) 0= u#- * (P-Pj-tav + Vo cosei^t 

where the values denoted by * are computed at t=k^t and at a point 

AA defined by 

(28) ^= (u-a)At, T^« vAt 

and a, in (27) and (28), is the average speed of sound between 

the point to be computed and Aw.  Note that the zero in the 

left-hand side of (27) represents the vanishing u component at 

the body point. 

The values at A# must be interpolated between body points 

and interior mesh points at time t=kAt. A linear interpolation 

seems to be sufficient, 

SECTION VI 

COMPUTATION AT THE OUTER BOUNDARY 

FOi practical reasons the numerical analysis is started at 

t=0 over a region bounded by the rigid circle and another circle, 

centered at x» -x (t ) and having a radius equal to T~t , where 
o o o 

t « 1.  Such a circle is the wave front of the perturbation 

initiated at t=0, which propagates in all directions with the 

speed of sound of the gas at rest, Jy~,   and is left behind by the 

19 



moving circle.  So long at t<t , the outer boundary is coneiderad 

fixed and the values of the physical parametere on it are the 

valu ,e of the gas at rest (the velocity components, obviously, 

are not zero since they are relative to the moving circle). 

After t=t , the perturbed region must be allowed to spread 

outside of the initial boundary.  From that moment on, the outer 

boundary is then considered as a moving shock. 

Obviously, in its rear part such a line is not a shock at 

all but a sound wave, which travels with a velocity /7~- x cospp 

in the normal direction at each point (here - is the angle between 

the normal to the wave and the x-axis).  In the first phase of 

the motion mentioned above, the rear part of the "shock" actually 

is the leading edge of an expansion wave. However, the values 

of the physical parameters on the outer boundary and the velocity of 

the latter can be computed by considering the boundary as a shock 

all around since a sound wave is an infinitely weak shock and 

even a weak expansion can be considered as a shock of negative 

strength, to within an accuracy of the third order in Mi-1 

(where M  is the normal component of the Mach number, relative 

to the shock). 

The computation of the shock proceeds as outlined in Ref. 11. 

The three Rankine-Hugoniot conditions, the conservation of 

tangential velocity, and one characteristic equation written for 

the interior of the computational region are sufficient to 

determine the Shock  velocity and the values of P,u,v, S behind 

the shock. A Cartesian frame of reference is used at each shock 

point; its --axis is normal to the shock and its —axis is tangent 

20 



to the shock, a« It is at tin« t- (k+l)At. With r«tp«ct to the 

cylinder, the ({,*) frame hae a tranalational motion defined by 

a constant velocity, equal to the tangential conponent of the 

flow velocity at the shock at time (k+l)At.  Let u and v be 

the components of the flow velocity, relative to the cylinder, 

in the (?,-) frame.  Let N;, Na and T1,Ta be the directive cosines 

of the {-axis and the —axis, respectively, with respect to the 

r-axis and the normal to it, as they are at t-(k+l)(it for the 

shock point to be computed.  Then the tangential component of 

the velocity at the shock point is 

(29) vg« -xo(T1cos9-TaSine) 

The normal component of the velocity at the shock point, 

in front of the shock is 

e 

(30) u.  - -x   (NiCOsG-Nasinfl) 

T^e normal component of the velocity relative to the shock,in 

front of it, is 

'"' vn r.i: V-" 

where W is the shock velocity in the normal direction» With 

nrel^ a relative normal Mach number is made, 

(32) M- Vn rtK A/T 

and the first Rankine-Hugoniot equation yields the relative normal 

component of the velocity behind the shock, 

(-1 1+^M» 
(33) Vn rel " Vn rel,  XÜ M» 
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Th« ••cond and third Rankint-Hugonlot equation» yiald tha density 

•nd prasaura bahind tha shock, 

(34) p - ^Äi- 
n ral 

OS) p- LaslLfldbaJJ 
v+l-(Y-l)p 

From these equations, the values of P and S behind the shock are 

found: 

(36) P- In p 

(37) S- P-Yln p 

A characteristic equation in the (?,t) plane (which moves along 

with the »-axis, normally to itself) is written: 

(38) u "1^+ ^(P-Pj + fa^v -y (Nxcosp-Hasing) lAt 

where the values denoted by * are computed at t«kAt and at a 

point AA defined by 

(39) ?#- (u^-aj^t ,   TT -vgAt 

and a, in (38) and (39), is the average speed of sound between 

the point to be computed and A#. Since, on the other hand, 

(40) VVn rel+ W 

the set of equations above can be used iteratively to determine 

all the unknowns contained therein. 

The values at AA must be interpolated between shock points 

and interior mesh points at time t-k^t. The interpolation can 

be coded in many different ways. A well-formed shock, followed 

by a rather flat distribution of values, presents no difficulties. 
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However, for ft «hock generated by coalescence of compression waves, 

the distribution of values behind it is very steep. A simple 

linear interpolation tends to underestimate the pressure at A#. 

Consequently, the computed value of P at the shock is too low 

and the shock does not build up strength.  The errors generated 

at the shock propagate inside the computational region, producing 

oscillations which are not physically justified.  This aberration 
9 

has been detected in one-dimensional problems and I suggested 

a different interpolation scheme which should work well under 

any circumstances.  It should be noted that, if the linear scheme 

is used in a one-dimensional problem, the wiggles tend to 

disappear once the piston reaches a constant speed (because the 

piston keeps sending high-pressure signals towards the shock, 

thus giving it a chance to gain strength, eventually ).  Therefore, 

the aberration is disturbing but not lethal.  In the present 

problem, instead, the pressure behind the shock must decrease, 

and strongly, in the second phase of the motion described above. 

The shock cannot correct its speed and shape, and the errors 

generated at the shock tend to grow bigger, inside the computational 

region, as the overall pressure decreases.  The oscillations 

may eventually grow beyond control.  It is thus imperative to 

use a better interpolation scheme in the shock computation; 

therefore, the scheme suggested in Ref. 9 has been adapted to 

the present two-dimensional problem. 
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SECTION VII 

RADIAL STRETCHING 

To complete the outline of the numerical scheme, a word must 

be spent on the definition of a In (19). If a« 1« the relationship 

between a and X is almost linear. Therefore, equal Intervals 

along the X-axls correspond to almost equal intervals between 

shock and body. With Increasing distance between shock and body, 

the mesh size in the physical plane tends to grow too large. 

Now, there are two regions in the flow field where we must 

maintain a high radial resolution.  One is a ring surrounding 

the body, where we want to achieve high accuracy since the values 

at the bc-3y are the most important from a practical standpoint. 

The other is the ring (FCDGHL) shown in Fig. 8, where the 

pressure changes rapidly from low to high values and to low values 

again for ••> n/2 and has a similar, but reversed, behavior for 

9< T/2.    Such changes are due to the fact that the initial 

perturbations (a strong compression coalescing into a shock and 

a strong expansion, respectively for e> TT/2 and e< n/2) are 

followed by perturbations of the opposite kind.  The thickness 

of the ring is of the order of the time spent to accelerate the 

body, multiplied by the speed of sound, that is, ^/y TT/UU.  Therefore, 

the nodes must concentrate in the vicinity of X»0 and X«l and 

this justifies the choice of the stretching function (19),  In 

addition, a should start increasing as soon as the first row of 

interior points reaches a distance d from the body which Is 

considered as the greatest to be allowed for.  From (18) and (19), 
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and forcing r-l»d whan X'&x, w« obtain 

(41) d. . %[1+ tanh?{^-f5)   j 
•'1 tanh(c/2) 

Than 

(42) 
d  2 tanh(a/2)  

at' "   (c-1)* ct  (AX-.5) Ll-tanh»a(AX-.5) J-2 tanha(AX-.5)co«a^a" 

This equation car be conveniently used to increment a at each 

step in order to keep d practically constant. In (41) and (42), 

the values of c and c. are assumed to be the ones on a typical 

radius, for example, on the x-axis in front of point A. 

SECTION VIII 

RESULTS FOR A FULLY SUBSONIC FLOW 

To better understand how t^e flow develops in a simple 

case, where no imbedded shocks are present, I analyzed the case 

in which the Mach number of the uniform flow at infinity, 

relative to the circle, is equal to 0,1, and the circle accel- 

erates slowly (W'TT), making an attempt to perform an exhaustive 

study. A preliminary computation was made, with a simplified 

stretching in the radial direction. The value of d was taken 

as 0.05, and t « 0.2. The mesh had 7 intervals in the radial 
o 

direction and 18 intervals circumferentially. Some of the resulting 

isobars az<* presented in Fig. 10.  They show qualitative agreement 

with the pattern foreseen in Fig. 5. However, early wiggles indicate 

a poor resolution of the mesh.  From a more detailed plot, which 

cannot be reproduced in a small scale, it appears that more and 
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more wiggles tend to develop at the beck of the cylinder towerde 

the leet computed step (at t"5.25# after 300 cycles) . 

Increasing the number of redial intervals to 28 and using 

the sketchings defined above with d>0.05 definitely improves 

the calculation. The isobar pattern so obtained (Fig. 11) can 

be compared with Fig. 10. No wiggles appear and the pattern 

follows closely the predictions of Section II. Note that the 

C «0 line issuing from the top point on the cylinder almost 

reaches the forward stagnation point bringing a strong expansive 

effect, and then recedes towards its steady state location, 30 

above the stagnation point. After 650 cycles  , the pressure 

distribution along the circle is the one to be found in the 

steady state to within 1%.  Figs. 12, 13 and 14 show in a different 

way how the steady state about the circle is reached.  Fig. 12 

is a plot of isobars in the plane of motion at the 400th cycle 

(t-5.06).  This is about the time when the forward stagnation 

point undergoes the maximum expansion. Fig. 13 is a similar plot 

at the 700th cycle (t«10.36). The steady state is achieved 

within a circle centered at the center of the body and having a 

radius twice the radius of the body. 

Finally, Fig. 14 is a similar plot at the 1000th cycle 

(t=15.66) . The region within a circle centered at the center of 

the body is practically in a steady state. The result is 

consistent with the propagation of signals at a speed practically 

equal to the speed of sound in the gas at rest:  if the steady 

One minute of CDC 6600 time. 
** 
About 6 minutes of CDC 6600 time. 

+ About eight minutes of CDC 6600 time. 
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Figure  12 

Figure   13 
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Figure 14 

state front is at r=2 when t=10 and travels at a speed equal to 

,/Y ■ 1.183, it reaches r«8.7 at t»15.6. 

The history of the pressure distribution on the symmetry line 

in front of the body is given by Fig. 15.  The pressure 

coefficient is plotted as a function of r (the body is at the left 

and the initial perturbation front at the right) every 100 

compucational cycles.   One can see how the initial, strong 

compression tends to form a shock. However, its tail is promptly 

reduced by the following expansion. Then a moderate compression 

builds up in the vicinity of the body and the steady state spreads 

outwards.  The original compression and the following expansion 

are reduced in strength when the computation stops, but they are 
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far from having been wiped out. 

Figs. 16,17 and 18 confirm the fact that a steady state has 

been reached.  The exact values of C in an incompressible, steady 

flow are given by 

(43) cp. iSf}^ - -jr 

In Figs. 16, 17 and 18 the solid lines represent the exact values 

(43) on the front and rear stagnation lines and on the fl»TT/2 line. 

The computed values at the 700th cycle are plotted in Fig. 16 and 

the computed values at the 1000th cycle are plotted in Fig. 17. 

Not only is it clear thac the steady state grows in size as 

explained above, but the accuracy of the results is proved.  In 

a similar way, the solid line in Fig. 18 represents the exact 

values (43) along the body (r=l) and the computed values are 

plotted for a comparison. 

Fig. 19 shows the pressure on the front stagnation line 

immediately behind the perturbation front, as a function of time. 

It appears that the shock starts building up at the time predicted 

by the one dimensional theory if the piston moves with the same 

law as the present body. 

Let is be noted explicitly that the stretching of the radial 

coordinate and the number of nodes are necessary and strictly 

sufficient to get the results presented above, which I consider 

satisfactory from both a theoretical and a practical standpoint. 

If fewer nodes are taken in the outer ring, wiggles appear in the 

far field almost simultaneously with the beginning of the steady 

flow in the near field.  The wiggles tend to move inwards as time 

increases and eventually they perturb the entire steady state 
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Figure 18 

region. 

In conclusion, we can issue a statement about the minimum 

computational time needed for determining the steady state at the 

surface of the body.  Starting at the instant at which the ac- 

celeration of the cylinder stops, one should let the expansion 

wave travel all the way from the rear stagnation point to the 

fore stagnation point and then again travel all the way back to 

the rear stagnation point.  The slowest speed of the wave is 

given by the difference between the speed of sound and the maximum 

modulus of the tangential velocity component.  The latter is 

reached at 9= 90 and is, according to the Rayleigh-Jantzen 

second order approximation for compressible flow (Ref. 14) 

,v
m,vl= v«(2+ -k M»M) max    •   b  » 
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Figure 19 

The steady state, thus, starts building up at the surface 

of the cylinder approximately at 

(44) t=t1 + 
2TT 

1   7f"[l-MaB(2+ JM,
3
) ] 

if the speed of sound around the cylinder is considered equal to 

the speed of sound at infinity. 

In the present case, M = .1, tx» .5 and tz7,2.  With a safety 

factor of 1.5, one can safely interrupt the computation at t«10, 

that is, after 700 computational cycles (about 6 minutes of CDC 

6600 time). 

For a cylinder one meter in diameter (x  f
s .5) accelerating 

to M» .1 in a standard atmosphere at sea level (a^-360 m/sec), 

t f-   .00164.  Then the physical time corresponding to t»10 equals 

.0164 sec.  The ratio t between computational time and real time 



is 

(45) tm -d$r m 22'000 

In the present computations, the safety coefficient applied to 

the Courant-Fnednchs-Lewy stability formula was taken substantially 

lower than necessary, and the size of the initial region 

substantially smaller than the distance of formation of the shock 

wave.  By relaxing both conditions, one should be able to reduce 

the computatior time to about 4 minutes, thus reducing t to about 

15,000.  This eems to be a lower boundary for t, with the present 

generation of computers. 
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SECTION IX 

A CRITICAL SURVEY OF OTHER APPROACHES TO THE PROBLEM 

At this atage, we have a complete analysis of the transition 

from the incipient motion to a steady atate regime and a 

consistent matching of the physical evolution with its numerical 

description.  Such a physically oriented study may also help us 

in judging the reliability of other numerical treatments of the 

steady state problem, all generally ascribed to the category of 

"time-dependent calculations". 

A) The flow relutive to the cylinder is studied in a frame 

fixed to it. An external boundary, also fixed with respect to 

the cylinder, is chosen arbitrarily.  It is assumed that the flow 

parameters on such a boundary are those of the uniform flow at 

infinity.  An arbitrary initial distribution of values is assumed 

in the computational region and the unsteady flow is computed. 

Such an approach, which seems to have been popular some years ago, 

was supported by the belief that, since the external boundary is 

taken at a respectable distance from the body, the conditions on 

it are, to all practical purposes, the same as at infinity  (see, 

for example, Ref. 5).  I have expressed my disagreement in Ref. 

12.  Here I wish to strengthen it on the light of the analysis 

above.  We have seen that the steady state results from the 

interplay of signals travelling around the body and outwards. We 

have seen the disastrous effects on the near field of perturbations 

proceeding inwards from the far field.  Now, in the first phases 

of a computation like the one described in this section, the signals 

from the body travel towards the outer boundary and cannot get out. 
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The boundary sends signals inwards, which have very little to do 

with the outgoing waves. Indeed, such a boundary does not act as 

a rigid wall but it does not act as an infinite capacity where 

the pressure is constanc  since velocity and entropy are also 

kept constant on it.  Consequently, one may expect to find an 

initial stage in which the results in the near field tend to 

approach the steady state solution, followed by a second stage of 

increasing inaccuracy. 

A computation of this kind (assuming local consistaicy of the 

numerical scheme with the equations of inviscid unsteady motion) 

is surely a time-dependent one.  However, it does not converge to 

the desired steady state pattern since it describes a problem with 

boundary conditions different from the ones consistent with the 

time-dependent evolution of a flow extending to infinity.  In 

certain cases, the results are deceptively smooth.  This is due 

to the presence of artificial viscosity in the numerical scheme. 

Clearly, there is no reason for the results of a dissipative 

calculation to be consistent with the time solution of an inviscid 

problem. 

B) The infinite field about the obstacle is mapped onto a 

finite canputational region by means of a stretching of coordinates 

in the radial direction. Again, arbitrary initial conditions are 

assumed.  I proposed this technique in Ref. 12 and some applications 

were made in Ref. 7.  By so doing, uniform values can be imposed 

on the outer boundary since the latter is actually at an infinite 

distance in the physical plane, and in principle, it is reached 

by outgoing waves only at t=».  At the light of the present study, 
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it is clear that a steady state tends to build up in the vicinity 

of the body but the computation eventually becomes unstable. 

Indeed, the spacing between nodes increases from the body to 

infinity.  The resolution is extremely poor where it should be very 

high (within the ring which follows the initial perturbation 

front).  In addition, in our exercise reported in Ref. 1,  we 

assumed impulsive initial conditions.  The initial phase of the 

motion, thus, was characterized by very strong perturbations. 

The technique was unable to handle shocks. As a consequence, the 

unsteady outgoing ring was full of numerical oscillations. As 

soon as these entered the region of poor resolution, they started 

feeding errors inwards.  The flow, which had reached an almost 

perfect pressure distribution near the body after 1000 computational 

steps, was competely destroyed at step 2000.  We can see now that 

the instability of the computation is explained again by 

inconsistency of the numerical analysis with the physical pattern. 

The saune code, with initial conditions given by the incompressible, 

steady flow field, went through 2000 cycles with no symptoms of 

deterioration and errors less than 0.0002.  It should also be 

noted that very good results in the vicinity of a body can be 

obtained by mapping the infinite physical field onto a finite 

computational field and letting the body st^.t from rest, in those 

cases where no shocks build up along the perturbation front. 

Obviously, the computation is to be halted where the steady state 

is reached near the body and before the poor far field resolution 

damages the near field.  Problems of this nature will be discussed 

in a forthcoming paper by B. Grossman. 
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C) Finally, th« conputation praaantad in Ref. 6 conaiata of 

assuming impulsive initial conditions and starring at a slightly 

later time. A perturbation front# in the form of a shock wave, 

similar to the one described in this report, is assumed around 

the body and let to expand. Unfortunately, an initial flow field 

must be defined between shock and body. Such a definition is bound 

to be arbitrary (in the present study, inadaaad,, the initial 

conditions are not arbitrary).  The result^ presented in Ref. 6 

are not so detailed to allow an analysis as minute as in this 

report.  However, in the light of the present analysis, it appears 

that the initial abitrariness is forever trapped within the 

computational region and it should eventually damage the steady 

state around the body when the latter tends to spread outwards. 

By proceeding as in Ref. 6, it seems to be difficult to stop the 

calculation at the right time because there is no criterion 

available to determine whether and when a steady flow is reached 

in the vicinity of the body.  The Author circumvents the onset 

of instabilities by using a low order integration scheme and 

numerical dissipation, two devices which I do not recommend. 
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